Small heat shock proteins inhibit amyloid-β protein aggregation and cerebrovascular amyloid-β protein toxicity *Wilhelmus MMM*/***, Boelens WC***, Otte-Höller I**, Kamps B***, De Lange F****, De Waal RMW**, Verbeek MM*

Departments of *Neurology, **Pathology, University Medical Centre, Nijmegen, Departments of ***Biochemistry and ****Microscopical Imaging Centre, University of Nijmegen, Nijmegen

Amyloid- β protein (A β), a 4 kDa peptide that accumulates in senile plaques and cerebral amyloid angiopathy, is involved in neuronal and cerebral vascular cell degeneration in Alzheimer's disease. Aggregation and cellular toxicity of A β may be affected by A β -associated proteins. Small heat shock proteins (sHsp) are molecular chaperones that can prevent target proteins from adopting aberrant conformations. Direct interaction between A β and Hsp27 and α B-crystallin have been demonstrated. It was the aim of our study to investigate if sHsps may affect aggregation of A β and thereby influence A β cytotoxicity. A β aggregation was studied by using Thioflavin T fluorescence, circular dichroism spectroscopy, Congo red staining, electron microscopy and atomic force microscopy. Binding affinity between sHsps and A β was investigated by surface plasmon resonance. Furthermore, we used our previously established model of A β -mediated toxicity towards cultured cerebrovascular cells to investigate the effects of sHsps on A β -mediated cytotoxicity. Here we demonstrated that sHsps, but especially α B-crystallin, inhibited aggregation of A β aggregation at the cell surface by the rapid formation of protofibril-like structures. In conclusion, sHsps may regulate A β aggregation and serve as antagonists of A β thereby preventing the interaction of A β with vascular cells.

Micha M.M. Wilhelmus, Departments of Neurology and Pathology, University Medical Centre, Nijmegen, e-mail <u>m.wilhelmus@pathol.umcn.nl</u>

Speaker, session 31.