Cellular models for amyloid-β toxicity *Chafekar SM*, Zwart R, Baas F, Scheper W Neurogenetics Laboratory, Academic Medical Center, Amsterdam

One of the hallmarks of Alzheimer's disease (AD) is extracellular deposition of senile plaques, composed primarily of aggregated β -amyloid (A β) peptide. Although A β is involved in the pathogenesis of AD, not much is known about the cellular mechanisms underlying Abeta toxicity in neurons.

We aim to study the molecular mechanisms of toxicity of $A\beta$ in neuroblastoma cells. By comparing the effects of intracellular $A\beta$ in these cells and extracellular addition of synthetic $A\beta$ to these cells we aim to study the role of subcellular localisation. In addition we want to study in detail the role of physico-chemical properties of $A\beta$ in its toxicity.

For studying toxicity of intracellular A β , we will use different cellular models: 1) neuroblastoma cell lines overexpressing wildtype APP and an FAD mutant APP, 2) neuroblastoma cell lines expressing ER-targeted A β . Using these models we can study the toxicity of A β related to its subcellular localisation.

Studying the cellular effects of extracellular A β , we also aim to compare the effects of fibrillar *vs*. oligomeric A β , since several studies have shown that the initial oligomers of A β , rather than the highly structured (fibrillar) aggregates are cytotoxic.

For studying the toxicity of extracellular $A\beta$, we will use different synthetic forms of $A\beta$: 1) fibrillar forms of $A\beta$ and 2) oligomeric forms of $A\beta$ (in cooperation with Technical University Eindhoven). Using these extracellular $A\beta$ models, we can study the toxicity of extracellular $A\beta$ and its interaction with associated proteins related to the aggregation status of $A\beta$. Additionally, this approach will give us detailed information about the physico-chemical properties of $A\beta$ in relation to its biological actions. These different cellular models will provide new information on the cellular mechanisms involved in $A\beta$ mediated neurotoxicity.

Sidhartha M. Chafekar, Neurogenetics laboratory, Academic Medical Center, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands, t 020-5664959, e-mail <u>s.m.chafekar@amc.uva.nl</u>

session number 31